Neural progenitor cells derived from adult bone marrow mesenchymal stem cells promote neuronal regeneration.

نویسندگان

  • Yue Tang
  • Yong-Chun Cui
  • Xiao-Juan Wang
  • Ai-Li Wu
  • Guang-Fu Hu
  • Fu-Liang Luo
  • Jia-Kang Sun
  • Jing Sun
  • Li-Ke Wu
چکیده

AIM It is well known that neural stem/progenitor cells (NS/PC) are an ideal cell type for the treatment of central nervous system (CNS) disease. However, ethical problems have severely hampered fetal NS/PC from being widely used as a source for stem cell therapy. Recently, it has been demonstrated that autologous bone marrow mesenchymal stem cells (BMSC) can transdifferentiate into neural progenitor cells (NPC). The biological function of BMSC derived NPC (MDNPC) in neuronal systems remains unknown. In the present study, we aimed to investigate whether MDNPC can promote in vitro neural regeneration, a process comprising mainly the generation of neurons and neurotransmitters. MAIN METHODS We co-cultured BMSC, MDNPC or fetal NS/PC with PC12 cells and studied their roles on proliferation, neurite formation and dopamine release from PC12 cells. Furthermore, we also explored the mechanisms by which MDNPC regulate dopamine secretion from PC12 derived neural cells using Western blot. KEY FINDINGS We found that both MDNPC and NS/PC had similar morphologies and there were no significant differences between MDNPC and NS/PC in promoting PC12 cell proliferation, neurite outgrowth, and dopamine release. We also demonstrated that NS/PC induced dopamine secretion was associated with an upregulation of dopamine transporter (DAT) levels. SIGNIFICANCE In summary, MDNPC were comparable to NS/PC in promoting neural regeneration, indicating that MDNPC are a promising candidate source of neural stem cells for the treatment of neurological diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells

In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...

متن کامل

Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...

متن کامل

Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract

Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bon...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Derived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages

The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Life sciences

دوره 91 19-20  شماره 

صفحات  -

تاریخ انتشار 2012